REDUCING ONE REVERSE HEAT-CONDUCTION
PROBLEM TO A SEMIREVERSE ONE

0. V. Minin - UDC 536.24.02

The algorithm for the solution of a reverse heat-conduction problem is simplified on the
basis of earlier derived approximate solutions to the corresponding second boundary-~value
problem.,

On the basis of the solution to the second boundary-value problem in heat conduction for a half-space,
simple expressions have been derived in [1, 2] for calculating the temperature field 4(x, 7) and the tem-
perature gradient d8(x, 7)/9x within the hot zone of a body from temperature readings at two points.

The extrapolation formulas are;

8(x, ) =B [ Xg—X  Xy—X (ﬁ_z)l/n]n, . "
Xo— X X,—x; \Oy
09 (x, %) — —nd l:xz—-x L (’Ez_)”"]”“ [ 1
ox ! X Xy x,—x; \Oy Xo— Xy
~ o) ?
x,—xp \%y ’ ,

where
§ =0 (x, 1), S=10(x, 1)

Here n = 3 when the thermal flux function q(r) = const, and n = 7 when q(r) = br. It has been possible to
establish that, within the same accuracy (3%) n = 4 when q(1) = br/4, n =5 when q(r) = br'/?, andn=6
when qr) =br¥/4. Generally, 3 =n =7 when q(r) = prP/d, p=q, b = const and b > 0.

The error in determining the temperature and the temperature gradient in the hot zone of a body
0 < x < Jar* does not exceed 3% for the entire class of thermal flux functions q(r) = b'rp/ 9 at a time
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with @ denoting the thermal diffusivity of the material.

Let xo/%; = 2. Then relations (1) and (2) for calculating the temperature and the thermal flux at the
body surface (x = 0) become, respectively,
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We will now consider the reverse heat-conduction problem which corresponds to the second boundary-
value problem. As in the reverse problem in a half-space with boundary conditions of the first kind [3],

the values of thermal flux at the body boundary can be determined from the following integral equations of
the convolution kind: '
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where $(x, 7) are the temperature readings at any point inside the body.

Problem (6), as has been shown in [4], is improper in the Adamar sense, inasmuch as the important
requirement that solution q(r) be a continuous function of the #(x, 1) readings is not necessarily satisfied.
In other words, the solution becomes unstable with respect to "initial input data." An explanation for this
is that the convolution operator in the reverse problem becomes, so to speak, improper [5]. The basic
indication of an improper operator is that the inverse operator becomes unbounded.

Tikhonov has shown in [3, 4] that, in order fo obtain a stable solution to such problems, it is neces-
sary to apply the method of regularization.

The purpose of thxs article is to demonstrate that, with the aid of the extrapolaticn formulas 4)-(5)
for solving Eq. (6), regularization is no longer required and the solution can be found by the conventional
method of successive approximations.

Although the said class of thermal flux functions is limited in the mathematical sense, from the prac-
tical standpoint it is sufficiently important in that the parameter b > 0, which determines the rate of change
of thermal flux, can vary over a wide range 0 < b < +x,

In the integral equation (6) we let x = 0 and then use Egs. {4)-(5). Replacing 7 by the Fourier number
Fo =at/x} yields the equality
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with the dimensionless integration variable Fo' defined to the same scale as Fo.

Introducing a second point where the temperature is read, therefore, will convert the reverse proh-
lem for the given class of thermal functions q(r) into a semireverse one.

Remembering that equality (7) is approximate, we may regard the power exponent n as a function of
Fo. Evidently, at large values of 7 the equation becomes more exact and n becomes less dependent on 7.
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has a limited range of variation with 3 <n =< 7, its maximum being m%xzp =7/2. Adding ¢ to the kernel of
. n,ro

We note further that at any time 1 = 0 the function

¢y (Fo', n) =n

Eq. (7), which now can be represented as

0 Fo’ > Fo,

with 1 = 1/Vmand /%) = 4 (a, Fo), we can write
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Structurally, Eq. (11) resembles the homogeneous Volterra equation of the second kind. This equa~
tion is already not improper in the earlier sense, since we have now an equation of the second kind rather
than of the first kind.

It must now be proved that the method of successive approximations (with respect to n) is convergent
and that such an iteration process is stable.

We will regard the value of exponent n as the parameter of Eq. (11). This immediately poses the
question as to the character of operator Ky containing that numerical parameter.

It is well known [6] that, for obtaining unique solutions to Fredholm and Volterra equations of the
second kind, the method of successive approximations is convergent when the integral operator Ky is com-
pressible. This means that for functions y,, and yy, 4 defined on two adjacent intervals m and m + 1 of the
iteration path we have the inequality

(Kym - Kym+ll\ <L nym ym+1!‘]r (13)
with the Lipschitz constant L < 1 and the norm sign - I for the corresponding functional space.

We will verify that the operator IEmP in Eq. (11) is compressible, under definite accuracy require-
ments, i.e,, that condition (13) is satisfied with L < 1,

By virtue of the operator f(nw being positive and monotonic with respect to n and Fo for every ny
€ 3, 7], the following estimate is valid:
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with the expression r:}axl ¢ (A, Fo)—¢ mm+q, Fo)l regarded as the norm. The cofactor in inequality (14) is
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and from here we find that the inequality
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must hold true.

We have established an important relation between the temperature readings and the time param-
eters. Relation (17) yields an overestimate of the lower convergence limit, with regard to r, for the
method of successive approximations as applied to the calculation of n. On the other hand, according to
estimate (3), the error in the determination of temperatures and temperature gradients at every point of
the region

0< x< Vart

does not exceed 3%, if
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Inserting Fo* = 4 into inequality (17) will yield
0.67 < 0,/0, < 1. (19)

This inequality replaces condition (3) by a more convenient one, inasmuch as the thermal diffusivity does
not appear in (19).

If $,/8 = 0.67, therefore, then the method of successive approximations will converge almost uni-
formly with respect to time and the series of thus found nyy, values will have a fixed point n which is the
solution to the equation. In other words, an indicator of uniform convergence ny, — n is the stability of
ny, values after time 7, = 7*, Since Kpp is a Volterra operator [6], hence the sequence of ny, values will
converge to i at least as fast as a geometric progression. The error in the determination of n will depend
here, first of all, on how accurately the true thermal flux at the boundary can be approximated by a function
of q(r) = brP/q class. Errors in the calculation of & will also depend on the selected number of nodes in the
interpolation polynomials & (t) and #;(t), and on the rounding-off errors in the final count, The initial ap-
proximation n; can be picked arbitrarily within the range 3=n= 7.

It can be easily verified that calculating n,, — @ is a stable process, i.e., that Anpy/ngy — 0 when
the number of steps m increases. We will not show here the proof of stability, however, because its con-
tent and terminology are beyond the scope of this article. Problems concerning the stability of the method
of successive approximations when applied to equations of the Ax = f kind (A denoting an operator with a
bounded inverse operator [|A™! g 1) have been analyzed theoretically in [5, 6].

If we lower the requirements as to accuracy of the approximations to the exact solution, then con-
straint (3) will weaken appreciably, and with it also constraint (19). Thus, with a 10% error allowed in
the determination of the temperature within the hot zone, inequality (19) will become

0.38< J2 1.
8

1
We will now show the scheme for solving Eq. (7), which has been written with a rather simple nota-
tion in the ALGOL~60 language.

From the continuous recording of the temperature & (x;, 7) and $,{xy, 7} as functions of time, we
tabulate the temperature readings 4(xy, 7i) and 4y, 7§) (G =1, 2,..., N} at uniform intervals 7. For each
given time 7§ we determine the upper interpolation limit in Eq. (7), and from the sequence of nodes #(x;,
Tij-r) and #&,, Ti-y) (r =1, 2, 3,...1) we construct Newtonian interpolation polynomials depending on t < 7.
This is necessary in order to perform the interpolation. Practical estimates indicate that the interpola-
tion polynomials 4 (r;_y) and & (1i-p) must be of the fifth degree at least.

We start with an arbitrary initial approximation ny € [3, 7] and calculate the right-hand side of the
equation. Since 4(x;, Ti) and #(x,, Tj) on the left-hand side of the equation are essentially numbers, hence
we proceed to the next approximation n =n;. Then we insert again, but this time n,, into the right-hand

side and find n,. This process is repeated until (np,4—0p)/0m+ = ¢, @ denoting the stipulated accuracy
for n.

For every 74, as has heen mentioned earlier, the exponent nyy, is some function of 7. Consequently,
having ascertained that 4,/8; = 0.67 (or &,/8; = 0.38), we may assume that ny, =n = const and let the com~
puter print out its value.

The thus found value of n determines the magnitude of the thermal flux q(r) as a function of time, at
time 75 > 7%,

From a series of temperature readings at two points of a body it is thus possible to diagnose the out-
side thermal effect and to determine the temperature field as well as the temperature gradient, without
knowing the thermophysical properties of the material.

If the thermal flux at the boundary varies as a function of time q(r) not in the class considered here,
then it becomes necessary to regularize by the Tikhonov or Morozov method, as has been done, for in-
stance, by Alifanov [7, 8].
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