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The a lgor i thm for  the solution of a r e v e r s e  heat -conduct ion  p r o b l e m  is s impl i f ied  on the 
b a s i s  of e a r l i e r  der ived  approx imate  solut ions to the cor responding  second boundary-va lue  

p rob l em.  

On the b a s i s  of the solution to the second boundary-va lue  p r o b l e m  in heat  conduction for  a ha l f - space ,  
s imple  exp re s s ions  have been der ived  in [1, 2] for  calculat ing the t e m p e r a t u r e  f ield ~(x, T) and the t e m -  
p e r a t u r e  gradient  8~{x, T)/~X within the hot zone of a body f r o m  t e m p e r a t u r e  readings  a t  two points .  

The ex t rapola t ion  fo rm u l a s  a re :  

8(x, ~} = ol [ x ~ - x  x ~ - x  ( 8 , / , / - ] .  
x ~ - x ,  x , - x ~  t s , )  J '  (1} 

oo<x,,> t ~  ' 
" Ox x . : -  x~ x , - -x~ \ ~ l  J x~-- x, 

- i ' 8 ' / " l  
x , - -  x, t-e-/~ l J ' 

where  

81 = 8 (X 1, T), 82 = 8 (X 2' T). 

Here  a = 3 when the t h e r m a l  flux function q(T) = coas t ,  and a = 7 when q(T) = bT. It has  been  poss ib le  to 
the s ame  accu racy  (3%) n = 4 whp~/q0-) <,:b'rl/" n : 5 when qT)  = bT 1/2, and n = 6 

establiShwhen q{T) that'3~ithia= b~- / ' Genera l ly ,  3 -< n -< 7 when q(T) = bT , p _ q, b = coas t  and b 0: 

The e r r o r  in de te rmin ing  the t e m p e r a t u r e  and the t e m p e r a t u r e  gradient  in the hot zone of a body 
0 - x -< ~ does not exceed  3% for  the en t i re  c l a s s  of t h e r m a l  flux functions q(T) = bT p /q  a t  a t ime 

. ~ . ~  x22 ) 
a 

(3) 

with a denoting the t h e r m a l  diffusivity of the m a t e r i a l .  

Le t  x2/x 1 = 2. Then re la t ions  (1) and (2) for  calcula t ing the t e m p e r a t u r e  and the t he rma l  flux at the 

body su r face  (x = 0) becom e ,  r e spec t ive ly ,  

o (0, ~) = e, [ 2 -  t~)(~ U"I"j, (4) 

n ~ x ]  (5) 
q {~) = ~ - -  8 (o, ~) (8,)' /" 

xl 2_tU,  s 

We will now cons ider  the r e v e r s e  hea t -conduct ion  p r o b l e m  which co r r e sponds  to the second boundary-  
value p r o b l e m .  As in the r e v e r s e  p r o b l e m  in a h a l f - s p a c e  with boundary  conditions of the f i r s t  kind [3], 
the values  of t h e r m a l  flux at  the body boundary  can be de te rmined  f r o m  the following in tegra l  equations of 

the convolution kind: 
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x~ 
* exp 

4a (r--t) [ (6) 

]/ a I 8(x, ~)-- s q(t) V T - - t  ' 
0 

where #(x, r) a r e  the t empera tu re  readings at any point inside the body. 

P rob lem (6), as has been shown in [4], is improper  in the Adamar  sense,  inasmuch as the important  
requi rement  that solution q(r) be a eontinuous function of the #(x, r) readings is not necessa r i ly  satisfied. 
In other words,  the solution becomes  unstable with respec t  to "initial input data." An explanation for this 
is that the convolution opera tor  in the r e v e r s e  problem becomes ,  so to speak, improper  [5]. The basic  
indication of an improper  opera to r  is that the inverse  opera to r  becomes  unbounded. 

Tikhonov has shown in [3, 4] that, in o rder  to obtain a stable solution to such problems,  it is neces -  
s a ry  to apply the method of regular iza t ion.  

The purpose of this ar t ic le  is to demonst ra te  that, with the aid of the extrapolat ion formulas  (4)-(5) 
for solving Eq. (6), regular iza t ion  is no longer  requi red  and the solution can be found by the conventional 
method of success ive  approximations.  

Although the said c lass  of thermal  flux functions is l imited in the mathemat ical  sense,  f rom the p r a c -  
tical standpoint it is sufficiently important  in that the p a r a m e t e r  b > 0, which determines  the rate  of change 
of thermal  flux, can vary  over  a wide range 0 -< b < +~ .  

In the integral  equation (6) we let x = 0 and then use Eqs.  (4)-(5). Replacing r by the Four i e r  number 
Fo = a r / x ~  yields the equality 

- (8 )1 o ] 
1-- 

81 I2 - ('~2)l/nln x 1 i 0 [ (82~ll'tI] rt l, ' ~ ]  dUo' (7, 
81 _ V•_ ~ 8,(Fo') 2 - -  \8'L/ .] _ 2--k81](8~ W~o>Fo  , , 

with the dimensionless  integrat ion variable Fo '  defined to the same scale as Fo. 

Introducing a second point where the t empera tu re  is read,  therefore ,  will conver t  the r e v e r s e  prob-  
lem for the given c lass  of thermal  functions q(r) into a s e m i r e v e r s e  one. 

Remember ing  that equality (7) is approximate ,  we may r ega rd  the power exponent n as a function of 
Fo. Evidently, at  large values of r the equation becomes  more  exact  and n becomes  less  dependent on r .  

We note fur ther  that at any time r -> 0 the function 

I- 

(Fo', n ) = n  / 

[ 

(8~ ~,/. ] 
(s) 

has a l imited range of variat ion with 3 -- n -< 7, its maximum being max @ = 7/2. Adding ~b to the kernel  of IL FO 
Eq. (7), which now can be represen ted  as 

(Fo', n) 0<~ Fo' < Fo, 
7(,~ = ]/Fo - -  Fo' ' 

0 Fo' > Fo, 

with/* = 1/q-rr and l /n]n = ~0(n, Fo), we can write 
Fo 

(p(n, Fo) ~-,tt S K,~(Fo, Fo', n) cp(n, Fo') dFo' (10) 
0 

or  

qo (n, Fo) - -  [~tKnq) "" 0, 

(9) 

(11) 

Fo 
K'A~ = .I K,~(n, Fo, Fo')~p(n, Fo')dFo'.  (12) 

0 

where 
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Structura l ly ,  Eq. (11) r e s emb le s  the homogeneous VoI te r ra  equation of the second kind. This  equa-  
tion is a l ready  not imprope r  in the e a r l i e r  sense,  since we have now an equation of the second kind r a the r  
than of the f i r s t  kind. 

It mus t  now be proved that the method of success ive  approximat ions  (with r e spec t  to n) is convergent  
and that such an i te ra t ion  p roce s s  is s table.  

We will r e g a r d  the value of exponent n as the p a r a m e t e r  of Eq. (11). This  immediate ly  poses  the 
question as to the cha rac t e r  of opera to r  Kn~0 containing that numer ica l  p a r a m e t e r .  

It is well known [6] that, for  obtaining unique solutions to Fredholm and Vol te r ra  equations of the 
second kind, the method of success ive  approximat ions  is convergent  when the in tegra l  opera to r  Ky is com-  
p re s s ib l e .  This means  that for  functions Ym and Ym+l defined on two adjacent  in tervals  m and m + 1 of the 
i terat ion path we have the inequality 

[!l<y,~- Ky~+lll ~< L]]y,. --y,~+xll, (13) 

with the Lipsehi tz  constant  L < 1 and the norm sign II. II for  the cor responding  functional space.  

We will ve r i fy  that the opera to r  Knr in Eq. (11) is compress ib le ,  under  definite accuracy  r e q u i r e -  
ments ,  i . e . ,  that condition (13) is sa t isf ied with L < 1. 

By v i r tue  of the opera to r  Kn~P being posi t ive and monotonic with r e spec t  to n and Fo for  eve ry  nm 
[3, 7], the following es t imate  is valid: 

IlR,,q~ (rim, Fo) - -  R,,q~ (n~+i, Fo)il = ILK.-r (n~, Fo) - -  R~ m+') q~ (n,.+l, Fo){[ 
Fo 

< I!Rs "+*~ (~ (n,., Fo) -- ,~ (nm+x, Fo))II < max ~' ~',g Fo' I1'~ (n,., Fo) - -  ,~ (n,.+. Fo)ll, (14) 
n,b~o u 

with the express ion  max l ~O(nm, Fo)-~0(nm+l, Fo)l r ega rded  as the norm.  The eofaetor  in inequality (14) is 
FO,rt 

Fo 

max K,=dFo 14 (15) 
n,Fo' ~ /~ -  

0 

if  

1 k6-~-~ / ~ m (16) s = m a x - - • ( F o ' ,  n) = (O~ /1/3 < 256Fo ' .,Fo. n 2 -  \ ~ /  

and f rom he re  we find that the inequality 

(1--  / 256F o 
E . - 1  

must  hold t rue .  

We have es tabl ished an impor tant  re la t ion  between the t empera tu re  readings  and the t ime p a r am-  
e t e r s .  Relat ion (17) yields an overes t ima te  of the lower  eonvergenee l imit ,  with r eg a rd  to r ,  for  the 
method of success ive  approximations as applied to the calculat ion of n. On the other  hand, according to 
es t imate  (3), the e r r o r  in the de te rmina t ion  of t empera tu re s  and t empera tu re  gradients  at every  point of 
the region 

0.<x~< Va-U 

does not exceed 5%, if 

x* >~ x_~. 
a 

F r o m  he re  we obtain 

(17) 

Fo*c T*a T*a 
x~ 4x] 

1 Fo* > 1. 
4 

(18) 
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Inse r t ing  Fo* = 4 into inequal i ty  (177 wil l  y i e ld  

0.67-<:.. ~/~1 < 1. (19) 

This  inequal i ty  r e p l a c e s  condit ion (37 by a more  convenient  one, inasmuch  as  the t h e r m a l  d i f fus ivi ty  does  

not a p p e a r  in (19). 

If ~2/$1 >- 0.67, t he r e fo r e ,  then the method of s u c c e s s i v e  app rox ima t ions  wi l l  converge  a lmos t  un i -  
f o r m l y  with r e s p e c t  to t ime and the s e r i e s  of thus found n m va lues  wil l  have a f ixed point  ~ which i s  the 
solut ion to the equation.  In o ther  words ,  an ind ica to r  of un i fo rm convergence  n m ~ ~ is  the s t ab i l i ty  of 
n m va lues  a f t e r  t ime r o - r* .  Since Kn~ is  a V o l t e r r a  o p e r a t o r  [6], hence the sequence of a m values  wil l  
converge  to n at  l e a s t  as  f a s t  as  a g e o m e t r i c  p r o g r e s s i o n .  The e r r o r  in the de t e rmina t i on  of ~ wil l  depend 
h e r e ,  f i r s t  of a l l ,  on how a c c u r a t e l y  the t rue  t h e r m a l  flux at  the boundary  can be app rox ima ted  by a function 
of q(T) = bTP/q c l a s s .  E r r o r s  in the ca lcu la t ion  of ~ wil l  a l so  depend on the s e l ec t ed  number  of nodes in the 
in t e rpo la t ion  po lynomia l s  ~1 (t) and ~2(t), and on the rounding-of f  e r r o r s  in the f inal  count. The in i t i a l  ap -  
p r o x i m a t i o n  n o can be p icked  a r b i t r a r i l y  within the range  3 -< n -< 7. 

It can be e a s i l y  v e r i f i e d  that  ca lcu la t ing  n m ~ fi is  a s tab le  p r o c e s s ,  i . e . ,  that A n m / n  m ~ 0 when 
the number  of s t eps  m i n c r e a s e s .  We wil l  not show he re  the proof  of s t ab i l i ty ,  however ,  because  i ts  con-  
tent  and t e rmino logy  a r e  beyond the scope of this  a r t i c l e .  P r o b l e m s  concern ing  the s t ab i l i t y  of the method 
of s u c c e s s i v e  a p p r o x i m a t i o n s  when appl ied  to equat ions of the Ax = f kind (A denoting an o p e r a t o r  with a 
bounded inve r se  o p e r a t o r  IIA -~ IRE1) have been  ana lyzed  t h e o r e t i c a l l y  in [5, 6]. 

If we lower  the r e q u i r e m e n t s  a s  to a c c u r a c y  of the app rox ima t ions  to the exac t  solut ion,  then con-  
s t r a i n t  (37 wil l  weaken a p p r e c i a b l y ,  and with i t  a l so  cons t r a in t  (19). Thus,  with a 10% e r r o r  a l lowed in 
the de t e rmina t i on  of the t e m p e r a t u r e  within the hot zone, inequal i ty  (197 wilt  become  

0 .38. (  ~ <1. 

We wil l  now show the scheme  for  solving Eq. (7), which has  been wr i t t en  with a r a t h e r  s imple  no ta -  
tion in the ALGOL-60  language.  

F r o m  the continuous r e c o r d i n g  of the t e m p e r a t u r e  $1(xi, T) and v~2(X2, T7 as functions of t ime ,  we 
tabula te  the t e m p e r a t u r e  r ead ings  $(x 1, r i )  and ~(x 2, r i )  (i = 1, 2 . . . . .  N) at  un i form in t e rva l s  r .  F o r  each 
given t ime T i we d e t e r m i n e  the upper  in t e rpo la t ion  l i m i t  in Eq. (77, and f rom the sequence of nodes ,~{x 1, 

Ti_r7 and $(x 2, r i - r )  (r = 1, 2, 3 . . . .  i) we cons t ruc t  Newtonian in t e rpo la t ion  po lynomia l s  depending on t < r i .  
This  is  n e c e s s a r y  in o r d e r  to p e r f o r m  the in te rpo la t ion .  P r a c t i c a l  e s t i m a t e s  indicate  that the i n t e r p o l a -  
tion po lynomia l s  $10-i-r)  and ~2(ri_ r) mus t  be of the fifth deg ree  a t  l ea s t .  

W e  s t a r t  with an a r b i t r a r y  in i t ia l  app rox ima t ion  n o E [3, 7] and ca lcu la te  the r igh t -hand  s ide  of the 
equat ion.  Since ~(xl, r i) and ~(x 2, Ti) on the l e f t -hand  s ide  of the equation a r e  e s s e n t i a l l y  number s ,  hence 
we p r o c e e d  to the next app rox ima t ion  n = n 1. Then we i n s e r t  again,  but this  t ime nl, into the r igh t -hand  
side and find n 2. This  p r o c e s s  is  r e p e a t e d  unt i l  ( nm +l - nm ) / nm + 1 -< ~ ,  c~ denoting the s t ipu la ted  a c c u r a c y  
for  n. 

F o r  e v e r y  r i, as  has  l~een ment ioned e a r l i e r ,  the exponent n m is  some function of r .  Consequently,  
having a s c e r t a i n e d  that  ~2 /~  -> 0.67 (or ~2/~1 _ 0.38), we may a s s u m e  that  n m = ~ = coas t  and le t  the com-  
pu te r  p r in t  out i t s  va lue .  

The thus found value of ~ d e t e r m i n e s  the magni tude of the t h e r m a l  flux q(r) as  a function of t ime,  a t  
t ime  r i > T*. 

F r o m  a s e r i e s  of t e m p e r a t u r e  r ead ings  at  two points  of a body it  i s  thus pos s ib l e  to d iagnose  the out-  
s ide t h e r m a l  ef fec t  and to d e t e r m i n e  the t e m p e r a t u r e  f ie ld as  well  as  the t e m p e r a t u r e  g rad ien t ,  without 
knowing the t h e r m o p h y s i c a l  p r o p e r t i e s  of the m a t e r i a l .  

If the t h e r m a l  flux at  the boundary  v a r i e s  as  a function of t ime q(T) not in the c l a s s  c o n s i d e r e d  he re ,  
then i t  b e c o m e s  n e c e s s a r y  to r e g u l a r i z e  by the Tikhonov or  Morozov method,  as  has  been done, for  in-  
s tance ,  by Ali fanov [7, 8]. 

1. 
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